Welcome to Science

We begin this course with a brief history of software development, and show how human thought and computer programming are related. We build upon these general concepts to cover object-oriented programming terminology such as objects, classes, inheritance, and polymorphism. During this process, we use Java to show how those fundamentals are implemented in a real programming language. We do this by demonstrating Java's primitive data types, relational operators, control statements, exception handling, and file input/output.

By the end of the course, you will understand the basics of computer science and the Java programming language. The principles you learn here will be developed further as you progress through the computer science discipline.


This course is intended for the student interested in understanding and appreciating common biological topics in the study of the smallest units within biology: molecules and cells.

Molecular and cellular biology is a dynamic field. There are thousands of opportunities within the medical, pharmaceutical, agricultural, and industrial fields (just to name a few) for a person with a concentrated knowledge of molecular and cellular processes. This course will give you a general introduction of these topics. In addition to preparing for a diversity of career paths, an understanding of molecular and cell biology will help you make sound decisions in your everyday life that can positively impact your diet and health.


chemistry is the science that describes everything you touch, see, and feel: from the shampoo you used this morning, to the plastic container that holds your lunch! In this course, we will study chemistry from the ground up: beginning with the basics of the atom and its behavior, to the chemical properties of matter, to the chemical changes and reactions that take place.

The physics of the universe appears to be dominated by the effects of four fundamental forces: gravity, electromagnetism, weak nuclear forces, and strong nuclear forces. These forces control how matter, energy, space, and time interact to produce our physical world. All other forces, such as the force you exert in standing up, are ultimately derived from these fundamental forces.

We have direct daily experience with two of these forces: gravity and electromagnetism. Consider, for example, the everyday sight of a person sitting on a chair. The force holding the person on the chair is gravitational, and that gravitational force balances with material forces that "push up" to keep the individual in place. These forces are the direct result of electromagnetic forces on the nanoscale. On a larger stage, gravity holds the celestial bodies in their orbits, while we see the universe by the electromagnetic radiation (light, for example) with which it is filled. The electromagnetic force also makes possible the advanced technology that forms much of the basis for our civilization. Televisions, computers, smartphones, microwave ovens, and even the humble light bulb are made possible by control of electromagnetism. The average physics major will spend more time understanding and applying the concept of electromagnetic force than he or she will spend studying any other type of force.

The classical (non-quantum) theory of electromagnetism was first published by James Clerk Maxwell in his 1873 textbook A Treatise on Electricity and Magnetism. A host of scientists during the nineteenth century carried out the work that ultimately led to Maxwell's electromagnetism equations, which is still considered one of the triumphs of classical physics. Maxwell's description of electromagnetism, which demonstrates that electricity and magnetism are different aspects of a unified electromagnetic field, holds true today. In fact, Maxwell's equations are consistent with relativity, which was not theorized until 30 years after Maxwell completed his equations.

In this course, we will first learn about waves and oscillations in extended objects using the classical mechanics that we learned about in PHYS101. We will also establish the sources and laws that govern static electricity and magnetism. A brief look at electrical measurements and circuits will help us understand how electromagnetic effects are observed, measured, and applied. We will then see how Maxwell's equations unify electric and magnetic effects and how the solutions to Maxwell's equations describe electromagnetic radiation, which will serve as the basis for understanding all electromagnetic radiation, from very low frequency, long wavelength radio waves to the most powerful astrophysical gamma rays. We will briefly study optics, using practical models largely consistent with the predictions of Maxwell's equations but that are easier to use. Finally, this course provides a brief overview of Einstein's theory of special relativity. We will assume that you have a basic knowledge of calculus.

This course will require you to complete a number of problems. Unlike mechanics, most of the phenomena encountered in the field of electromagnetism are not found in everyday experience – at least, not in a form that makes the actual nature of the phenomena clear. As a result, learning electromagnetism involves developing intuition about a rather unintuitive area of physics. In the end, developing physical intuition is less about getting a right answer than it is about getting a wrong answer and then understanding why it is wrong. In an ideal situation, this course would require you to both work out problems concerning the phenomena and observe various important phenomena in the laboratory. However, because this is an online course, we do not have the luxury of lab sessions. We have included a number of interactive demonstrations to compensate for this. When you approach a problem, try to work out the size of those quantities that clarify the basic nature of the question proposed. Thinking of these numbers as data from an ideal laboratory will help you develop a sense of how electromagnetism works – a sense that most people do not get from the mathematical description of the physics.


In general, the quest of physics is to develop descriptions of the natural world that correspond closely to actual observations. Given this definition, the story behind everything in the universe, from rocks falling to stars shining, is one of physics. In principle, the events of the natural world represent no more than the interactions of the elementary particles that comprise the material universe. In practice, however, it turns out to be more complicated than that.

As the system under study becomes more and more complex, it becomes less and less clear how the basic laws of physics account for the observations. Other branches of science, such as chemistry or biology, are needed. In principle, biology is based on the laws of chemistry, and chemistry is based on the laws of physics, but our ability to understand something as complex as life in terms of the laws of physics is well beyond our present knowledge. Physics is, however, the first rung on the ladder of our understanding of the physical universe.

In this course, we will study physics from the ground up, learning the basic principles of physical laws, their application to the behavior of objects, and the use of the scientific method in driving advances in this knowledge. This first of two courses (the subsequent course is Introduction to Electromagnetism) will cover the area of physics known as classical mechanics. Classical mechanics is the study of motion based on the physics of Galileo Galilei and Isaac Newton. While mathematics is the language of physics, you will only need to be familiar with high school level algebra, geometry, and trigonometry. The small amount of additional math and calculus that we need will be developed during the course.